0=-16t^2+30t-4

Simple and best practice solution for 0=-16t^2+30t-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+30t-4 equation:



0=-16t^2+30t-4
We move all terms to the left:
0-(-16t^2+30t-4)=0
We add all the numbers together, and all the variables
-(-16t^2+30t-4)=0
We get rid of parentheses
16t^2-30t+4=0
a = 16; b = -30; c = +4;
Δ = b2-4ac
Δ = -302-4·16·4
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{161}}{2*16}=\frac{30-2\sqrt{161}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{161}}{2*16}=\frac{30+2\sqrt{161}}{32} $

See similar equations:

| 10c=36-38c-47 | | 5/4y+6-1/3y=8 | | 2x+5+2x+x=4x+6 | | 8x+4=-24+4x | | 3h=2h+8/4 | | 6x+4=31+3x | | 5+5x=2x+20 | | X+1(3x-4)=x+2(3x-4) | | (1/36)^n=216^n+5 | | 6(x^2+12x+35)=0 | | 6(z+1)=84 | | 6(d+3)=72 | | 7(4x+8)=364 | | 4(4+5x)=16 | | (3z-4)(9-z)=0 | | 4a=4-9-2a | | q+16/3=9 | | 110=76+x | | 1/4x+3=1/8x+1 | | -6x=10x+2 | | (5-2i2)2=0 | | v+11/10=2 | | 4(1x+6)=40 | | 2(7x+9)=88 | | 2^m=27 | | 87=6v+21 | | 2(17x-3)(4x+13)=0 | | 87=6v | | 7(1x+2)=70 | | 22-4v=14 | | 39=(2x+5)+(x-3)+(3x+1) | | 9=21-4p |

Equations solver categories